CHEMICAL COMPOSITION OF THE ESSENTIAL OILS FROM FLOWERS, STEMS, AND ROOTS OF Salvia multicaulis GROWING WILD IN IRAN

M. Mohammadhosseini,^{1*} A. Pazoki,² and H. Akhlaghi³

UDC 547.913

The genus *Salvia* (Lamiaceae) grows in the temperate and warmer zones of the world. Fifty-eight species are found in Iran, among which 17 are endemic [1]. *Salvia multicaulis* is an evergreen shrub growing to $0.3m \times 0.25$ m, native to South-West Asia, particular Eastern, Central, and Southern Turkey. Some species of genus *Salvia* are used as medicinal, aromatic, and ornamental plants. *Salvia officinalis* (sage) is one of the most widespread species and is used as a spice, condiment, and medicine [2, 3]. The essential oils of some *Salvia* species have been formulated into different products such as bactericides or fungicides [4]. Recently, many investigations have been reported on the essential oils and biological activity of *Salvia* species [5–8].

In this work, hydrodistilled essential oils from crushed dry flowers, stems, and roots of *Salvia multicaulis* Vahl. (Lamiaceae) from Semnan province (Iran) were studied by GC and GC/MS [9]. The air-dried flowers, stems, and roots of the plant yielded 0.38, 0.29, and 0.18% (w/w) yellowish colored oil, respectively. The percentage composition of the flower, stem, and root oil of *S. multicaulis* is given in Table 1.

Twenty-one constituents (94.28%) were identified in flower oil: seven monoterpene hydrocarbons (33.73%), five oxygenated monoterpenes (47.79%), eight sesquiterpene hydrocarbons (12.54%), and one oxygenated sesquiterpene (0.22%). 1,8-Cineol was the most abundant constituent (25.27%), followed by α -pinene (18.32%), camphor (12.40%), camphene (8.45%), and bornyl acetate (7.89%).

Eight constituents (98.05%) were identified in stem oil: three monoterpene hydrocarbons (36.9%) and five oxygenated monoterpenes (61.15%). In this oil we could not find any trace of sesquiterpenes. It was characterized by a higher amount of 1,8-cineol (24.83%), camphor (24.20%), α -pinene (20.91%), and camphene (13.03%).

Nine compounds (95.37%) were identified in root oil: two monoterpene hydrocarbons (10.96%), four oxygenated monoterpenes (75.43%), two sesquiterpene hydrocarbons (5.56%), and one oxygenated sesquiterpene (3.66%). It was characterized by the presence of higher amounts of borneol (48.75%), followed by camphor (17.17%), 1,8-cineol (7.96%), and α -pinene (6.59%). In this oil oxygenated monoterpenes predominated over monoterpene hydrocarbons and sesquiterpenes.

According to the above-mentioned information, the flower and root oils were characterized by large amounts of monoterpenes (81.52 and 86.39%, respectively) while the constituents of stem oil were only monoterpenes (98.05%).

A comparison of the chemical composition of *Salvia multicaulis* with previous published reports reveals that bornyl acetate (18.1%), β -caryophyllene (16.5%), and α -pinene (15.6%) were the major constituents of the flowering shoots [10], while the main constituents of the oil from leaves and flowers [11] were α -pinene (26.0%), 1,8-cineol + limonene (20.0%), and camphor (19.0%); on the other hand, the main components of the oil from aerial parts [12] were α -copaene (8.0%), α -pinene (6.6%), myrtenol (5.7%), and sabinyl acetate (5.3%); other reports on the oil of flowering aerial parts [13] showed that the main components were camphor (11.0%), 1,8-cineol (10.7%), borneol (8.6%), and α -pinene (7.5%).

To the best of our knowledge, this is the first report on the essential oils of the stem and root of *Salvia multicaulis* Vahl.

Department of Chemistry, Islamic Azad University, Shahrood branch, Shahrood, Iran, e-mail: mohammadhosseini_iri@yahoo.com; 2) Department of Agriculture, Islamic Azad University, Varamin branch, Varamin, Iran;
Department of Basic Science, Islamic Azad University, Sabzevar branch, Sabzevar, Iran. Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 98-99, January-February, 2008. Original article submitted November 27, 2006.

Compound	Retention indices	Flowers oil	Stems oil	Roots oil
		%		
α -Thujene	931	0.37	-	-
α-Pinene	936	18.32	20.91	6.59
Camphene	953	8.45	13.03	4.13
Sabinene	976	0.30	-	-
β -Pinene	980	4.60	2.96	-
Myrcene	991	1.12	-	-
1,8-Cineol	1033	25.27	24.83	7.96
γ-Terpinene	1059	0.57	-	-
Camphor	1145	12.40	24.20	17.17
Borneol	1167	1.91	4.96	48.75
Terpinen-4-ol	1178	0.32	-	-
α-Terpineol	1191	-	1.34	-
Bornyl acetate	1286	7.89	5.82	1.55
α-Ylengene	1374	0.48	-	-
α-Copaene	1376	0.21	-	-
β -Caryophyllene	1418	5.80	-	-
Calarene	1428	0.56	-	4.37
α-Humulene	1452	3.47	-	1.19
α -Amorphene	1470	1.02	-	-
α-Muurolene	1499	0.37	-	-
δ -Cadinene	1524	0.63	-	-
Caryophyllene oxide	1581	0.22	-	-
β -Eudesmol	1650	-	-	3.66
Total percentage		94.28	98.05	95.37

TABLE 1. Comparison between Percentage Composition of Flower, Stem and Root Oils of Salvia multicaulis Vahl.

The compounds have been sorted according to retention indices on an HP-5 MS capillary column.

REFERENCES

- 1. K. H. Rechinger, SaMa, In: *Flora Iranica*, Labiatae, No. 150. Edits, K. H. Rechinger and I. C. Hedge, Akademische Druck and Verlagsanstalt, Graz, Austria, 1982.
- 2. J. Kybal, *Plants aromatiques et culinaries*, Grund Edition, 1981, 125.
- 3. R. Philipps, Les plants aromatiques et medicinales, Bordas Edition, 1987, 167.
- 4. O. A. Onayade, J. J. C. Scheffer, and A. Baerheim-Svendsen, Flav. Frag. J., 6, 281 (1991).
- 5. F. Alishahi-Noorani, F. Sefidkon, M. Yoosefzadi, S. Neamati, and M. Khajeh-Piri, *Iran. J. Med. Arom. Plants*, **21**, 453 (2006).
- M. C. G. Vallejo, L. Moujiri, J. Burillo, L. L. Guerra, M. Gonzalez, R. D. Penate, L. San Andres, J. B. Luis, F. L. Blanco, and C. M. R. de Calarreta, *Flav. Frag. J.*, 21, 277 (2006).
- 7. F. Senatore, N. A. Arnold, F. Piozzi, and C. Formisano, J. Chromatogr. A, 1108, 276 (2006).
- 8. J. Glamoclija, M. Sokovic, J. Vukojevic, I. Milenkovic, and L. J. L. D. Van Griensven, *J. Essent. Oil Res.*, **18**, 115 (2006).
- 9. R. P. Adams, *Identification of Essential Oil Components by Gas Chromatography/ Mass Spectrometry*, Allured Pub. Corp., Carol Stream, IL., USA, 1995.
- 10. L. Ahmadi and M. Mirza, J. Essent. Oil Res., 11, 289 (1999).
- 11. A. Rustaiyan, S. Masoudi, A. Monfared, and H. Komeilizadeh, *Flav. Frag. J.*, 14, 276, (1999).
- 12. F. Senatore, N. A. Arnold, and F. Piozzi, J. Chromatogr. A., 1052, 237 (2004).
- 13. K. Morteza-Semnani, K. Moshiri, and M. Akbarzadeh, J. Essent. Oil-Bearing Plants, 8, 6 (2005).